Copied to
clipboard

G = C23.34D20order 320 = 26·5

5th non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.34D20, C406C46C2, (C2×C4).29D20, (C2×C20).40D4, C22⋊C8.6D5, (C2×C8).107D10, C10.6(C2×SD16), C20.44D49C2, (C2×C10).13SD16, (C22×C10).48D4, (C22×C4).75D10, C20.279(C4○D4), (C2×C20).738C23, (C2×C40).118C22, C20.48D4.2C2, C22.101(C2×D20), C10.7(C8.C22), C22.8(C40⋊C2), C51(C23.47D4), C4.103(D42D5), C2.10(C8.D10), C4⋊Dic5.268C22, (C22×C20).48C22, (C2×Dic10).12C22, C10.14(C22.D4), C2.10(C22.D20), C2.9(C2×C40⋊C2), (C5×C22⋊C8).8C2, (C2×C10).121(C2×D4), (C2×C4⋊Dic5).12C2, (C2×C4).683(C22×D5), SmallGroup(320,348)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C23.34D20
C1C5C10C20C2×C20C4⋊Dic5C2×C4⋊Dic5 — C23.34D20
C5C10C2×C20 — C23.34D20
C1C22C22×C4C22⋊C8

Generators and relations for C23.34D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, dad-1=eae-1=ab=ba, ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d19 >

Subgroups: 398 in 104 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C2×C4⋊C4, C22⋊Q8, C40, Dic10, C2×Dic5, C2×C20, C2×C20, C22×C10, C23.47D4, C10.D4, C4⋊Dic5, C4⋊Dic5, C4⋊Dic5, C23.D5, C2×C40, C2×Dic10, C22×Dic5, C22×C20, C20.44D4, C406C4, C5×C22⋊C8, C20.48D4, C2×C4⋊Dic5, C23.34D20
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C22.D4, C2×SD16, C8.C22, D20, C22×D5, C23.47D4, C40⋊C2, C2×D20, D42D5, C22.D20, C2×C40⋊C2, C8.D10, C23.34D20

Smallest permutation representation of C23.34D20
On 160 points
Generators in S160
(2 50)(4 52)(6 54)(8 56)(10 58)(12 60)(14 62)(16 64)(18 66)(20 68)(22 70)(24 72)(26 74)(28 76)(30 78)(32 80)(34 42)(36 44)(38 46)(40 48)(81 147)(83 149)(85 151)(87 153)(89 155)(91 157)(93 159)(95 121)(97 123)(99 125)(101 127)(103 129)(105 131)(107 133)(109 135)(111 137)(113 139)(115 141)(117 143)(119 145)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(81 147)(82 148)(83 149)(84 150)(85 151)(86 152)(87 153)(88 154)(89 155)(90 156)(91 157)(92 158)(93 159)(94 160)(95 121)(96 122)(97 123)(98 124)(99 125)(100 126)(101 127)(102 128)(103 129)(104 130)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)(113 139)(114 140)(115 141)(116 142)(117 143)(118 144)(119 145)(120 146)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 115 69 121)(2 94 70 140)(3 113 71 159)(4 92 72 138)(5 111 73 157)(6 90 74 136)(7 109 75 155)(8 88 76 134)(9 107 77 153)(10 86 78 132)(11 105 79 151)(12 84 80 130)(13 103 41 149)(14 82 42 128)(15 101 43 147)(16 120 44 126)(17 99 45 145)(18 118 46 124)(19 97 47 143)(20 116 48 122)(21 95 49 141)(22 114 50 160)(23 93 51 139)(24 112 52 158)(25 91 53 137)(26 110 54 156)(27 89 55 135)(28 108 56 154)(29 87 57 133)(30 106 58 152)(31 85 59 131)(32 104 60 150)(33 83 61 129)(34 102 62 148)(35 81 63 127)(36 100 64 146)(37 119 65 125)(38 98 66 144)(39 117 67 123)(40 96 68 142)

G:=sub<Sym(160)| (2,50)(4,52)(6,54)(8,56)(10,58)(12,60)(14,62)(16,64)(18,66)(20,68)(22,70)(24,72)(26,74)(28,76)(30,78)(32,80)(34,42)(36,44)(38,46)(40,48)(81,147)(83,149)(85,151)(87,153)(89,155)(91,157)(93,159)(95,121)(97,123)(99,125)(101,127)(103,129)(105,131)(107,133)(109,135)(111,137)(113,139)(115,141)(117,143)(119,145), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,115,69,121)(2,94,70,140)(3,113,71,159)(4,92,72,138)(5,111,73,157)(6,90,74,136)(7,109,75,155)(8,88,76,134)(9,107,77,153)(10,86,78,132)(11,105,79,151)(12,84,80,130)(13,103,41,149)(14,82,42,128)(15,101,43,147)(16,120,44,126)(17,99,45,145)(18,118,46,124)(19,97,47,143)(20,116,48,122)(21,95,49,141)(22,114,50,160)(23,93,51,139)(24,112,52,158)(25,91,53,137)(26,110,54,156)(27,89,55,135)(28,108,56,154)(29,87,57,133)(30,106,58,152)(31,85,59,131)(32,104,60,150)(33,83,61,129)(34,102,62,148)(35,81,63,127)(36,100,64,146)(37,119,65,125)(38,98,66,144)(39,117,67,123)(40,96,68,142)>;

G:=Group( (2,50)(4,52)(6,54)(8,56)(10,58)(12,60)(14,62)(16,64)(18,66)(20,68)(22,70)(24,72)(26,74)(28,76)(30,78)(32,80)(34,42)(36,44)(38,46)(40,48)(81,147)(83,149)(85,151)(87,153)(89,155)(91,157)(93,159)(95,121)(97,123)(99,125)(101,127)(103,129)(105,131)(107,133)(109,135)(111,137)(113,139)(115,141)(117,143)(119,145), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(95,121)(96,122)(97,123)(98,124)(99,125)(100,126)(101,127)(102,128)(103,129)(104,130)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,115,69,121)(2,94,70,140)(3,113,71,159)(4,92,72,138)(5,111,73,157)(6,90,74,136)(7,109,75,155)(8,88,76,134)(9,107,77,153)(10,86,78,132)(11,105,79,151)(12,84,80,130)(13,103,41,149)(14,82,42,128)(15,101,43,147)(16,120,44,126)(17,99,45,145)(18,118,46,124)(19,97,47,143)(20,116,48,122)(21,95,49,141)(22,114,50,160)(23,93,51,139)(24,112,52,158)(25,91,53,137)(26,110,54,156)(27,89,55,135)(28,108,56,154)(29,87,57,133)(30,106,58,152)(31,85,59,131)(32,104,60,150)(33,83,61,129)(34,102,62,148)(35,81,63,127)(36,100,64,146)(37,119,65,125)(38,98,66,144)(39,117,67,123)(40,96,68,142) );

G=PermutationGroup([[(2,50),(4,52),(6,54),(8,56),(10,58),(12,60),(14,62),(16,64),(18,66),(20,68),(22,70),(24,72),(26,74),(28,76),(30,78),(32,80),(34,42),(36,44),(38,46),(40,48),(81,147),(83,149),(85,151),(87,153),(89,155),(91,157),(93,159),(95,121),(97,123),(99,125),(101,127),(103,129),(105,131),(107,133),(109,135),(111,137),(113,139),(115,141),(117,143),(119,145)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(81,147),(82,148),(83,149),(84,150),(85,151),(86,152),(87,153),(88,154),(89,155),(90,156),(91,157),(92,158),(93,159),(94,160),(95,121),(96,122),(97,123),(98,124),(99,125),(100,126),(101,127),(102,128),(103,129),(104,130),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138),(113,139),(114,140),(115,141),(116,142),(117,143),(118,144),(119,145),(120,146)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,115,69,121),(2,94,70,140),(3,113,71,159),(4,92,72,138),(5,111,73,157),(6,90,74,136),(7,109,75,155),(8,88,76,134),(9,107,77,153),(10,86,78,132),(11,105,79,151),(12,84,80,130),(13,103,41,149),(14,82,42,128),(15,101,43,147),(16,120,44,126),(17,99,45,145),(18,118,46,124),(19,97,47,143),(20,116,48,122),(21,95,49,141),(22,114,50,160),(23,93,51,139),(24,112,52,158),(25,91,53,137),(26,110,54,156),(27,89,55,135),(28,108,56,154),(29,87,57,133),(30,106,58,152),(31,85,59,131),(32,104,60,150),(33,83,61,129),(34,102,62,148),(35,81,63,127),(36,100,64,146),(37,119,65,125),(38,98,66,144),(39,117,67,123),(40,96,68,142)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222244444444455888810···101010101020···202020202040···40
size1111222242020202040402244442···244442···244444···4

59 irreducible representations

dim1111112222222222444
type+++++++++++++---
imageC1C2C2C2C2C2D4D4D5C4○D4SD16D10D10D20D20C40⋊C2C8.C22D42D5C8.D10
kernelC23.34D20C20.44D4C406C4C5×C22⋊C8C20.48D4C2×C4⋊Dic5C2×C20C22×C10C22⋊C8C20C2×C10C2×C8C22×C4C2×C4C23C22C10C4C2
# reps12211111244424416144

Matrix representation of C23.34D20 in GL4(𝔽41) generated by

1000
04000
0010
0001
,
40000
04000
0010
0001
,
1000
0100
00400
00040
,
0100
1000
002316
002512
,
0900
9000
002927
002512
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[0,1,0,0,1,0,0,0,0,0,23,25,0,0,16,12],[0,9,0,0,9,0,0,0,0,0,29,25,0,0,27,12] >;

C23.34D20 in GAP, Magma, Sage, TeX

C_2^3._{34}D_{20}
% in TeX

G:=Group("C2^3.34D20");
// GroupNames label

G:=SmallGroup(320,348);
// by ID

G=gap.SmallGroup(320,348);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,254,219,58,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^19>;
// generators/relations

׿
×
𝔽